University of Michigan scientists discover how SEVI works

December 22, 2015

In solution, SEVI is completely unstructured or has no definite shape and is therefore ineffective. On the other hand, "when bound to the membrane, it's in a spaghetti-like arrangement---a disorganized, loose coil," said Ramamoorthy, a professor of chemistry and of biophysics. In contrast, most other amyloid proteins assume a more ordered, helical configuration. Also unlike other amyloid peptides, SEVI does not penetrate deep into the greasy region of the cell membrane, but is located near the surface. Ramamoorthy and coauthors believe the spread-out, disordered configuration and its location in the cell membrane may explain the ability of SEVI fibers to enhance HIV infection, as the arrangement provides more surface area with which the virus can interact.

A key finding of the second study is that PAP248-286 "shocks" the membrane, inducing a structural change---a kind of dimple that allows HIV to attach to and enter the cell.

Next, Ramamoorthy and colleagues hope to discern more structural details of PAP248-286 and SEVI. They also plan to screen antioxidant compounds such as green tea extract, curcumin and resveratrol (found in red wine) to see if such compounds are capable of blocking SEVI's HIV-enhancing activity.

Source: University of Michigan