Surgeons of BMI of Texas selected to host a preceptorship for using REALIZE Adjustable Gastric Band
October 04, 2015
In their experiments, the researchers used myoglobin, a protein responsible for creating the red pigments that give meat its color. Instead of creating a chemical bond between myoglobin and the polymer, the Duke researchers chose a specific spot on the protein, known as the N-terminus, and then grew the polymer from that specific location. Every protein has an N-terminus, so this method should be broadly useful, Chilkoti said.
After demonstrating they could create a stable compound using the new method, the researchers tested how well it worked by comparing its actions to the conventional compound in mice.
"The conventional compound - myoglobin - had a half-life of three minutes and was totally eliminated by two hours," Chilkoti explained. "By contrast, the new compound had a half-life 40 times greater and remained in circulation for 18 hours. The longer a protein remains in the system and is active, the more it helps the patient."
"The dramatic improvement in how the new compound acted encourages us that this new approach will have broad applications in improving the efficacy of many protein drugs," Chilkoti said.
Another benefit of this approach, according to Chilkoti, is that the polymer should naturally degrade in the body over time and be easily excreted. "Because the compound is biodegradable, we should in principle be able to make even larger protein-polymer combinations with potentially even better pharmacologic properties," he said.
The researchers plan to apply their invention to other protein-based therapies, such as for cancer and diabetes, to determine if they can improve effectiveness of the protein drug while reducing its undesirable toxic effects.
Other Duke team members were Weiping Gao, Wenge Liu, J. Andrew Mackay, Michael Zalutsky and Eric Toone.
www.duke